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a b s t r a c t

Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalogra-

phy (EEG) data provides information critical in understanding the evolution of epileptiform changes

throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via

linked automation of multiple data processing steps. Using EEG recordings obtained from electrical

stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of

pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms,

(3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis.

This algorithm allows for quicker, more efficient EEG analysis.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Animal models of epilepsy provide a means of studying the
progressive neuropathological changes associated with epilepto-
genesis and gauging the effectiveness of potential treatments. The
electrical discharges from the brain are useful for diagnosing
epilepsy and monitoring anti-epileptic treatments [1,2].

Electrical stimulation of the rodent hippocampus evokes a
burst of electrical activity known as an afterdischarge (AD), which
contains distinct phases of unique electroencephalographic (EEG)
morphology [3,4]. The electrical activity produced by stimulation
of rodents that have previously undergone epileptogenesis using
the rapid kindling model is characterized by robust changes in the
morphology of each phase of the AD [5]. Analyzing these patterns
through both qualitative and quantitative measures is essential to
further characterizing differences in the response to stimulation
between normal and epileptic brains, as well as in evaluating the
effectiveness of potential anticonvulsive and antiepileptogenic
treatments.

Powerful tools and software for EEG analysis make highly
complex and detailed data processing possible; however, manu-
ally implementing these tools to process and analyze individual
EEGs for a large data set is time-consuming and repetitive.
Waiting for individual processes to run between user commands
is cumbersome, and the time loss due to human response, menu
ll rights reserved.
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navigation and command execution accumulates rapidly with
repetitive user input. This can make large-scale data analysis
highly inefficient, increase the possibility for human error and
lead to data backlog and research delays. Since the majority of
time lost to inefficiency is accrued by the user, limiting the need
for user input through the use of automated processes should
greatly improve data processing efficiency.

In the current study, the goal is to develop a tool to be used for
EEG analysis in experimental models of epilepsy with the poten-
tial for clinical translation. Thus we describe an algorithm
designed to streamline EEG data analysis by providing linked
automation of several aspects of data processing. EEG recordings
were collected from a series of 14 electrical stimulations to the
right dentate gyrus of rats. Recordings were processed using
NeuroExplorer, and automated processes were created using
NexScript software (Nex Technology, Littleton, MA, USA). The
algorithm enables more efficient and comprehensive EEG utiliza-
tion to be accomplished virtually unsupervised directly from the
raw EEG.
2. Materials and methods

Studies were performed on 6 adult male Wistar rats (8 weeks
old; Charles River Laboratories, Wilmington, MA, USA) in accor-
dance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals. Protocols were approved by the
Louisiana State University Health Sciences Center Institutional
Animal Care and Use Committee. Animals were housed individu-
ally in a temperature-controlled vivarium under a 12-hour light/
dark cycle and were provided access to food and water ad libitum.
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Fig. 1. Flow diagram of the data processing algorithm. Each processing step is

coded in an independent script controlled through a master script that accepts all

user inputs. The master script may be utilized to run individual or multiple scripts.

Additional process scripts controlled by the master script (not shown) offer the

option of automatically exporting rasters as well as batch removal of user-

specified variables from multiple files.
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Animals were allowed to acclimate to their surroundings upon
arrival to the animal facility prior to undergoing surgery.

2.1. Surgery

Animals were anesthetized with a mixture of ketamine hydro-
chloride and xylazine (50–80 mg/kg and 5–8 mg/kg; i.p.) and secured
in a stereotaxic frame. Bipolar electrodes (Plastics One, Roanoke, VA)
were implanted in the right dentate gyrus (AP: �3.6 mm, L: 2.0 mm,
DV: 4.0 mm ventral to the dura) [6]. Electrodes were grounded to a
single screw implanted in the occipital bone. All implanted hardware
was fixed in position to the skull with acrylic glue. Following surgery,
animals were returned to individual cages and allowed 7 days to
recover prior to stimulations.

2.2. Stimulation and EEG recording

Rats were transferred to Plexiglas cages and allowed to freely
roam during subsequent stimulations and EEG recordings. Each
rat’s bipolar electrode was connected to the data acquisition
system by a series of cables linked through a commutator. The
stimulation protocol consisted of a single series of 14 electrical
stimulations (10-s train of 50 Hz biphasic 1-ms pulses) [7]
delivered at 30-min intervals via the bipolar electrode to the
right dentate gyrus. The stimulation intensity was graduated with
the first six stimulations at 50 mA, the next six at 100 mA and the
final two at 200 mA. This stimulation protocol was implemented
to detect differences in AD responses associated with limbic
seizures. The gradation is intended to illicit different threshold-
specific responses that are of use when comparing the stimulation
data of normal rats and epileptic rats with and without anti-
epileptogenic and anticonvulsive treatments. Synchronous five-
minute video (JVC Everio, Wayne, NJ, USA) and EEG recordings
were collected for each stimulation. Recordings were composed of
a short pre-stimulation segment continuous with the immediate
post-stimulation period such that each recording included at least
50 s of pre-stimulation EEG for baseline comparison and at least
160 s of post-stimulation EEG. Stimulations were delivered
sequentially to 6 animals over approximately 90 s, and EEG
recordings were collected using Enhanced Graphics Acquisition
for Analysis (Version 3.63, RS Electronics, Santa Barbara, CA). The
signal was amplified 1000 times, band-pass filtered 0.5–40 Hz
(3 dB/octave; Med Associates, Georgia, VT, USA) and digitized at a
sampling rate of 200 Hz. Two skilled observers continuously
monitored rat behavior, and post-stimulation behavioral
responses were graded using a modified Racine Scale [8] (data
not included). Upon completion of the stimulation series, animals
were deeply anesthetized [ketamine hydrochloride (50–80 mg/kg)
and xylazine (5–8 mg/kg); i.p.] and sacrificed.

2.3. Data analysis

EEG data was visualized and subsequently analyzed offline
using NeuroExplorer (Nex Technology, Littleton, MA). The
selected AD segment or burst, which was defined to include
clusters of repetitive epileptiform potentials (spikes, poly-spikes,
spike-waves and sharp waves), was manually selected, and the
initiation and conclusion of the AD were entered as interval data
into the NeuroExplorer file [9].

2.4. Programming

Code for the algorithm and automated processes was written in
NexScript (Nex Technology, Littleton, MA) and functions through the
use of NeuroExplorer to access and modulate files containing EEG
data. The code for the master script may be found in the Appendix.
3. Results and discussion

3.1. Algorithm design

Numerous studies have focused on automated EEG analysis to
determine the best and most efficient method to identify specific
events such as spikes and seizures [10,11]. We designed an
algorithm that combines several tools and techniques to auto-
mate data processing and analysis for an entire data set. The goal
was to create a standardized, adaptable system for use in experi-
mental epilepsy models that optimizes EEG utilization and mini-
mizes the burden on the electroencephalographer. The algorithm
is designed to be modular, and each step of data analysis (Fig. 1) is
performed by a separate automated routine or script. A single
master script (Appendix) controls all the individual scripts and
provides the interface through which all user input to the
algorithm is entered. Here the user specifies which modules to
run, where output files are saved and what parameters are used
for the active modules. With the exception of the ‘Spike & Burst
Analysis’ and ‘power spectral density (PSD) Analysis’ phases,
which utilize manually selected AD burst intervals, modules can
be executed without prior modification to the raw data.
3.1.1. EEG alignment to the stimulus and extraction of pre- and post-

stimulation intervals

The sequential method by which our setup delivers stimula-
tions to the animals aids in behavior analysis by temporally
separating individual behavioral responses, thereby facilitating
real-time observation of multiple animals simultaneously. How-
ever, EEG alignment relative to the point of stimulation facilitates
the comparison of AD progression between animals and among
stimulations for the same animal. The ‘EEG Event Alignment’
phase of the algorithm aligns the EEGs relative to the point of
stimulation by locating the initial amplitude spike of the stimula-
tion event for a single user-specified channel and using its
position in the sequence to synchronize the stimulation times
for all channels (Fig. 2A). Because the algorithm is modular, this



Fig. 2. EEG alignment to the stimulus and interval extraction output: (A) the 5

EEG recordings represent responses of 5 animals to right dentate gyrus stimula-

tion that have been temporally aligned relative to the start of their respective

stimulations (arrow). The black boxes encompass the standardized pre- and post-

stimulation EEG segments to be isolated and (B) the isolated segments are shown

with a box marking the EEG that will be further analyzed in subsequent figures.

Time scale is shown for each EEG; amplitude scale varies by EEG based on the

maximum and minimum amplitude values for each.
Fig. 3. Series grouping output. The full series of 14 pre- and post-stimulation EEGs

are shown in ascending order for a single animal with stimulations 1–6 at 50 mA,

7–12 at 100 mA and 13–14 at 200 mA. The fourth stimulation, marked with a box,

is the same as that marked in Fig. 2B, here shown in the context of stimulations to

a common animal. Time scale is shown for each EEG; amplitude scale varies by

EEG based on the maximum and minimum amplitude values for each.
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phase can be run in isolation within minutes of the completion of
each recording, allowing one to actively assess the progression of
ADs over the series of the stimulations, appreciate trends and
contextualize corresponding behavioral responses. The ‘EEG Event
Alignment’ phase may also be modified to align other events of
interest, such as seizures, for comparison.

Once EEGs have been aligned, the ‘Interval Extraction’ phase of
the algorithm isolates the 50-s segment occurring immediately
prior to the stimulation and the corresponding 160-s post-
stimulation segment that starts immediately following the gross
return of the mean EEG signal to baseline (Fig. 2B). The interval
lengths and positions relative to the stimulation can be adjusted
to fit the user’s needs. This phase of the algorithm defines and
standardizes the pre- and post-stimulation intervals relative to
the stimulation and vastly reduces the time requirement from
that of manual EEG interval selection. The consistency and
reproducibility of pre- and post-stimulation interval selection
across all recordings facilitates and enhances both qualitative
and quantitative analysis of EEGs.
3.1.2. Organization of EEG data for offline visual analysis

After isolating standardized intervals, visually analyzing a
complete series of EEGs remains a daunting task. In the past,
methods included alternating between several overlapping win-
dows or poring through large stacks of EEG strips, but the
efficiency and ability to follow strip-to-strip trends was some-
what limited or simply time-intensive [12,13]. In our experiment,
we delivered a series of 14 stimulations per rat, each generating
an individual EEG stored in one of 14 files corresponding to the
respective stimulation. To facilitate the analysis of this data, the
‘Series Grouping’ phase of the algorithm rearranges the EEG data
to create a single file for each animal that contains the EEG
recordings from all 14 stimulations in the series (Fig. 3). Upon
completion of this phase, the entire sequence of standardized,
temporally aligned post-stimulation EEGs can be viewed together
on a single monitor. This viewing window allows a more thor-
ough visual analysis without being limited to a specific time scale,
as is necessary when EEGs are printed or viewed in separate
windows. The analyst can then simultaneously process multiple
EEGs within a single viewing window and focus solely on
identifying the subtle similarities and differences among them.
3.1.3. Automated creation of frequency bands for analysis

Further analysis of post-stimulation EEG composition, espe-
cially AD bursts (see Section 2.3) and their respective oscillatory
components, requires application of a band-pass filter to the EEG
that isolates user-selected frequency bands. As shown in Fig. 4,
the ‘Band-pass Filter’ phase of the algorithm is useful in analyz-
ing AD waveforms corresponding to delta (0.5–3.5 Hz), theta
(4–8 Hz), beta (13–20 Hz) or gamma (21–80 Hz). The new wave-
forms are stored within the same file to facilitate selection and
viewing for analysis. We acknowledge that no consensus exists as
to the limits that define the common frequency bands, so we
designed this phase to allow the user to modify the frequency
band limits as desired. The algorithm is also equipped to isolate
additional frequency bands such as ripples and high frequency
oscillations. Upon isolation, quantification of ripples and high
frequency oscillations is then possible through the ‘Spike and
Burst Analysis’ phase of the algorithm described in Section 3.1.5.



Fig. 4. Band-pass filter output: (A) the EEG marked in Figs. 2B and 3 is shown

here. The box contains the selected AD interval for which the isolated

band frequency waveforms are shown in (B): delta (d; 0.5–3.5 Hz), theta (y; 4–

8 Hz), beta (b; 13–20 Hz) and gamma (g; 21–80 Hz). The spikes in the raw EEG can

be seen to correspond to the peaks of d, b and g, while y oscillations, though

prominent, do not correspond to peaks. Time scale is shown for each EEG;

amplitude scale varies by EEG based on the maximum and minimum amplitude

values for each.

Fig. 5. Spike and burst analysis output. The EEG shown in Fig. 4A is shown with

corresponding spikes marked by vertical bars and AD burst intervals marked

below spikes. The expanded segment contains the AD interval (square box). The

thin pairs of lines represent the spike threshold, which was set at 2.5 standard

deviations relative to the mean baseline, and the rectangular box marks the pre-

stimulation segment, which exhibits no spike activity. Time scale is shown for

each EEG; amplitude scale varies by EEG based on the maximum and minimum

amplitude values for each.
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3.1.4. Automated spike detection

The ‘Spike Detection’ phase of the algorithm detects points in
the EEG that represent epileptiform potentials. It first identifies
possible spikes based on a threshold calculated from the mean
and the product of the standard deviation (SD) and a user-defined
threshold coefficient [3,10]. The threshold coefficient was set to
2.5 for the current study, yielding a threshold of 2.5 SDs from the
baseline amplitude. Each supra-threshold value is then compared
to nearby points ensuring that a single spike marks each voltage
peak (Fig. 5). This process uses the power (root mean square) of
the signal on a sliding window for spike detection. The algorithm
also provides the option to perform ‘Spike Detection’ on any
isolated frequency bands created during the ‘Band-pass Filter’
phase, which can be utilized to study events such as ripples and
high frequency oscillations.
Fig. 6. Spike rate. The bar graph shows the overall pre-stimulation (black) and

post-stimulation (white) spike rates for 50 and 100 mA stimulations (n¼35 and 36

EEGs, respectively). Error bars represent one standard error.

3.1.5. Optimization of spike and burst analysis

AD bursts provide further insight into neuronal responses to
stimulation. NeuroExplorer has a built-in template that uses
multiple parameters applied to the set of marked amplitude
spikes to create intervals that approximate AD bursts. Addition-
ally, the template generates numerous quantitative statistics
including spike rate (Fig. 6), burst rate, burst duration and
spikes/burst. We sought to analyze AD bursts exhibiting clusters
of repetitive epileptiform spiking [9]. We were unable to use the
template to create a filter with sufficient sensitivity for identify-
ing AD bursts that could still reliably exclude false positives
secondary to the combination of non-repetitive spiking and
noise-related spikes in our data. However, we were able to
achieve adequate burst identification through meticulous manual
adjustment of template-derived intervals. Unfortunately, manual
adjustment rendered the previously template-derived numerical
data obsolete and posed a time requirement similar to that of
manually selecting the burst intervals. To obtain the accurate
burst intervals needed to generate reliable quantitative data, the
AD burst intervals first need to be selected manually (see Section
2.3, Fig. 1) and then the ‘Spike and Burst Analysis’ phase of the
algorithm uses the built-in template to generate data that
corresponds to the manually selected intervals (Fig. 5). The
algorithm may easily be modified to utilize automated burst
detection and, in such a case, could be run unsupervised and
uninterrupted. We have utilized the algorithm in this way for
other experiments to quantify ripples or bursts of high frequency
oscillations in recordings collected from 16-channel silicon
probes (NeuroNexus, Ann Arbor, MI, USA) by a different recording
system. As an example, the channels for spike extraction were
band-pass filtered between the frequencies of 200 and 300 Hz
using a standard Butterworth Filter. The high-frequency data then
underwent a spike-detection process. The average signal value
was calculated for each channel, and a threshold for spike
detection was set at three standard deviations from this mean.
A timestamp was placed at every point where the filtered EEG
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data crossed this threshold, resulting in multiple trains of spikes
that marked high-frequency activity. For burst analysis, groups of
spikes that had inter-spike-intervals within ten milliseconds of
each other were considered a burst of HFO. A minimum of three
spikes was necessary for a train of spikes to be considered a burst.
The number of bursts, average length of burst and average spikes
per burst that occurred in each channel were then quantified and
analyzed (data not included).
3.1.6. Automated power spectral density analysis

Power spectral density (PSD) is another useful tool for char-
acterizing post-stimulation EEGs and has been used extensively in
sleep/wake state scoring and seizure detection [12,14]. The
relative contributions of the different frequency bands can be
determined for an individually specified sequence in NeuroEx-
plorer using a PSD template, which generates graphical and
numerical data that can be output in Excel spreadsheets (Micro-
soft, Redmond, WA, USA). The ‘PSD Analysis’ phase of the algo-
rithm uses the PSD template to automatically generate PSD data
for user-defined EEG segments. Figs. 7 and 8 show how this data
can be used to compare a pre-stimulation EEG to an AD burst
segment. PSD data may be used similarly to analyze trends among
post-stimulation EEG segments, AD bursts or to characterize
Fig. 7. Power spectral density analysis output. The continuous plot shows the

percentage of the total power spectral density (PSD) from 0 to 40 Hz for the pre-

stimulation segment (orange) and the AD burst interval (red) corresponding to the

rectangular and square boxes in Fig. 5, respectively.

Fig. 8. Frequency analysis. The bar graph compares mean PSD values for several of

the oscillatory components shown in Fig. 4 with burst interval oscillation values

(red) normalized to pre-stimulation values (orange). Note the relative decrease in

delta oscillations and increase in beta and gamma oscillations in the AD burst,

which is consistent with their appearance in Fig. 4.
different phases of the AD within a single strip. Additionally, the
numerical data output to Excel is automatically organized into a
logical, easy-to-use format as it is generated. Overall, the algo-
rithm vastly reduces the time requirement for PSD analysis,
making it feasible for use in large-scale analysis.
4. Conclusions

The algorithm we developed facilitates data analysis by auto-
mating the following steps in EEG data manipulation: (1) alignment
and isolation of standardized segments of pre- and post-stimula-
tion EEGs, (2) generation of isolated band-frequency waveforms,
(3) spike detection, (4) generation of quantitative data including
spike rate, AD burst rate, AD duration and spikes per AD burst and
(5) generation of quantitative PSD data from user-defined seg-
ments of the EEG recording that can include AD bursts. In addition
to increasing the efficiency of each individual phase of data
analysis, minimizing the number of interruptions from user-
required steps and the extent of user involvement in data proces-
sing allows the algorithm to be run virtually unsupervised. Overall,
this algorithm enables rapid, large-scale EEG analysis through a
customizable framework that facilitates reproducibility and adapt-
ability to new studies.
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Appendix A. User-input section of master script

The initial section of the Master Script is presented. It contains
the part of the Master Script with which the user will work and in
which all the user-specified variables are defined. Non-coding text
and characters appear in green and are preceded by ‘%’. Variables to
be defined for use in the code appear in black. The corresponding
user definitions appear in red if they represent a number and in blue
within quotation marks if they represent a text string.
Appendix B. Supplementary material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.compbiomed.2011.10.017.
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